DoubleThrill

This weekend opqrstu3D designed & printed ‘DoubleThrill’… It looks very UN3DPRINTED. I am doing experiments in ‘infill only’ 3dprinting for two years and this is the print that says it all: ‘DoubleThrill’ really looks like it’s made of lace-like fabric. It’s not as thin as lace, but 0.9 mm comes close. It was a five and a half hour print job and took 12 meters white 3D4makers PETg. It’s printed at 0.3 mm layer height, 600 layers high. Bed Temp: 65 ºC, Extrusion Temp: 230 ºC. It’s almost unbelievable: infill printed at 0.9 mm thickness.
Only by going extreme opqrstu3D arrived at this point and created an awesome light:

DoubleThrill © opqrstu 2017

print time

One of the major problems in 3D printing is the amount of time it takes to print perfect things: higher print speeds cause unwanted irregularities. So, when opqrstu3D designs things, I always try the keep them as small as possible. Sometimes this is not an option. Six months ago, I designed and printed GGJK, a wonderful light. A very small LED driver from China allowed me to design a minimal basecamp for this light. This way opqrstu3D reduced print time substantially. But an unforeseen problem arrived on the scene; the basecamp was too small to guarantee stability. GGJK could stand up, but that was it. To build a really functional GGJK, it’s basecamp needed some adaptation. Opqrstu3D talked with Gerard, 12VoltLightDesign, Schoone about this problem and he advised to design a slanting base: the base of the basecamp is big, but it gets smaller layer by layer. I tried and printed a new and very steep basecamp. Without support! Printing this thing plus lid took almost 7 hours at perimeter print speed: 20 mm/sec, layer height 0.3 mm. I am not happy with the increase in print time, but very happy with the new design, because on this basecamp GGJK gained the highly required stability.

GGJK © opqrstu 2016
GGJK © opqrstu 2016

FullMoon

Today, 12 volt LED bulb’s are getting better and cheaper, but they do not run on 220 Volt. You can buy all kinds of 220 volt LED’s, but these are quite expensive. Can 3D printing help us to connect 12 volt LED’s directly to 220 volt light systems? Some posts ago, I designed and printed JellyLight. It connects a 3 Watt, 12 volt LED to a regular 220 volt home system, but is not easy to assemble/use.

Now there’s FullMoon, a very simple three parts 3D printed light. FullMoon fits easy in almost any modern living. Opqrstu3D printed it on 3D4makers transparent PET-g and tested it in the opqrstu studio. This light is much easier to assemble and has an ‘infill only’ printed light head. The ‘infill only’ structures create an organic, silky or moony look.

FullMoon © opqrstu 2016
FullMoon © opqrstu 2016

Creatr is printing on it’s original old nozzle again and as predicted: FullMoon looks perfect. For your information: a complete FullMoon needs an eleven hours print job (0.3 mm layer height). To assemble this light, you need a constant voltage 12 volt LED driver, some wires, some very small screws, two small connectors and a 3 watt/12 volt LED. Save energy!