This weekend opqrstu3D designed & printed ‘DoubleThrill’. I am doing experiments in ‘infill only’ 3dprinting for two years now and this is the print that says it all: ‘DoubleThrill’ really looks like it’s made of lace-like fabric. It’s not as thin as lace, but 0.9 mm comes close. It was a five and a half hour print job and took 12 meters white 3D4makers PETg. It’s printed at 0.3 mm layer height, 600 layers high. By going extreme, opqrstu3D arrived at this point and created an awesome light:

DoubleThrill © opqrstu 2017

tissue engineering: testing PLLA

3D4makers has a new filament: PLLA. It’s a PLA that might be used in new medical applications like tissue engineering. Tissue engineering is a domain in medical technology and has emerged as a promising alternative approach in the treatment of malfunctioning or lost organs where patients are treated by using their own cells, grown on a polymer support, so that a tissue part is regenerated from the natural cells.

JP Wille, the founding father of 3D4makers asked opqrstu3D to test PLLA in infill only settings. Meanwhile, Slic3r updated their infill patterns with a pattern called ‘3D Honeycomb’. This new infill pattern should, in theory, provide maximum strength in all axes while using the least amount of material to do so. Today opqrstu3D tested PLLA on ‘3D honeycomb infill only settings and the results look very promising. The prints are light weighted, very strong and looking real clear. The cube is a tissue engineering test. As the pict also shows; PLLA is also a promising filament for non-medical prints.

Tissue engineering has nothing to do with boats and ‘kroonsteentjes’, it’s about growing animal/human cells in biodegradable materials. To demonstrate the possibilities of PLLA on infill only settings, I downloaded the model of an ear and a nose by addamay123. Creatr printed slightly adapted versions on PLLA, 3D honeycomb infill only.


woven glass?

Today, Creatr printed ‘brocade’ on transparent PET-G. The most functional light in opqrstu3D history. Very clear, but structured enough to dim the direct light power of LED’s. Again, ‘infill only’ comes with an un3Dprinted look. This time, clear PET-G infill makes me think of woven glass: very thin (1 mm) but structured, excellent for 12 Volt, 1 Watt LED.

brocade © opqrstu2016
brocade © opqrstu 2016

Opqrstu3D designed ‘brocade’, but it’s just an imitation of a very classic light shade. This shape became classic because it does what it has to do: spreading photons, the way we like it.

Are these lights affordable?

When you are an experienced 3D printer and study the ‘infill only’ concept, these lights are very affordable: once designed, you can print as many as you want. Creatr needs 4 hours to complete this job. It’s a tricky job, so not every print will survive. A ‘brocade’ light shade consumes 13 meters Pet-G and some electricity. You also need a very cheap LED driver and print a save housing around it: another 13 meters of filament on a 4 hour print job. Together: 26 meters PET-G, 8 hours of printing, some electricity and some cheap things, max: 15 dollars pro ‘brocade’ light system. Do It Yourself and save a whole lotta a money and energy.